
Identification of Security related Bug Reports via Text Mining using Supervised and
Unsupervised Classification

Katerina Goseva-Popstojanova and Jacob Tyo
Lane Department of Computer Science and Electrical Engineering

West Virginia University, Morgantown, WV, USA
Email: Katerina.Goseva@mail.wvu.edu

Abstract—This paper is focused on automated classification
of software bug reports to security and non-security related,
using both supervised and unsupervised approaches. For both
approaches, three types of feature vectors are used. For
supervised learning, we experiment with multiple learning
algorithms and training sets with different sizes. Furthermore,
we propose a novel unsupervised approach based on anomaly
detection. The evaluated is based on three NASA datasets. The
results show that supervised classification is affected more by
the learning algorithms than by feature vectors and using only
25% of the data for training provides as good results as if 90%
of data are used for training. Both supervised and unsupervised
learning can be used for identification of security bug reports;
the former slightly outperforms the latter at the expense of
labeling the testing set. In general, the performance differs
across datasets, mainly due to the different amounts of security
related information.

Keywords-software vulnerability; security bug reports; clas-
sification; supervised learning; unsupervised learning; anomaly
detection.

I. INTRODUCTION

Issue tracking systems are used by software projects to
record and follow the progress of every issue that developers,
testing personnel and/or software system users identify.
Issues may belong to multiple categories, such as software
bugs, improvements, and new functionality. In this paper,
we are focused on software bugs reports (as a subset of
software issues) with a goal to automatically identify those
software bugs reports that are security related, that is, are
related to security vulnerabilities that could be exploited
by attackers to compromise any aspect of cybersecurity
(i.e., confidentiality, integrity, availability, authentication,
authorization, and non-repudiation).

Software bug reports contain title, description and other
textual fields, and therefore text mining can be used for
automating different tasks related to software bug reports.
For example, text mining of software bug reports have
been used in the past to identify duplicates [1], classify
the severity levels [2], assign bugs to the most suitable
development team [3], classify different types of bugs (i.e.,
standard, function, GUI, and logic) [4], and topic modeling
to extract trends in testing and operational failures [5]. Only
several related works, however, were focused on using text-
based prediction models to automatically classify software
bug reports to security related and non-security related
[6], [7], and [8]. Prediction models used in these papers

were based on supervised machine learning algorithms that
require labeled bug reports for training. Note that none of
these works experimented with the size of the training set
and its effect on the performance of the predictions.

In this paper we propose both a supervised approach and
unsupervised approach that can be used to help security
engineers to quickly and accurately identify security bug
reports. Specifically, for both approaches we use three types
of feature vectors: Binary Bag-of-Words Frequency (BF),
Term Frequency (TF), and Term Frequency-Inverse Doc-
ument Frequency (TF-IDF). For the supervised approach,
we experiment with multiple algorithms (i.e., Bayesian
Network, k-Nearest Neighbor, Naive Bayes, Naive Bayes
Multinomial, Random Forest, and Support Vector Machine),
each in combination with the three types of feature vectors.
Unlike the related works [6],[7], and [8], we use training
sets with different sizes to determine the smallest size of
the training set that produces good classification results.
We believe that this aspect of our work has an impact on
the practical value of the automated classification because
the manual labeling of the bug reports in the training set
is a tedious and time consuming process. Furthermore, we
propose, for the first time, an unsupervised approach for
identification of security bug reports. This novel approach
is based on the concept of anomaly detection and does not
require a labeled training set. Specifically, we approached
this as one-class classification, and classified bug reports
similar to the descriptions of vulnerability classes from the
Common Weakness and Enumeration (CWE) view CWE-
888 [9], [10] as security related.

We evaluate the proposed supervised and unsupervised
approaches on data extracted from the issue tracking systems
of two NASA missions. These data were organized in
three datasets: Ground mission IV&V issues, Flight mission
IV&V issues, and Flight mission Developers issues. We used
these three datasets in our previous work [11] to study the
profiles of the security related bugs reports based on the
manual classification of each bug report to one of the twenty
one primary vulnerability classes from CWE-888 [10]. In
this paper we use the manual classification from our previous
work [11] as labels for the training sets in the case of
supervised learning and as ground truth for evaluation of
both the supervised and unsupervised learning approaches.

1

https://ntrs.nasa.gov/search.jsp?R=20180004739 2019-05-01T03:11:02+00:00Z



In this paper we address the following research questions:

RQ1: Can supervised machine learning algorithms be used to
successfully classify software bug reports as security
related or non-security related?

RQ1a: Do some feature vectors lead to better classifica-
tion performance than other?

RQ1b: Do some learning algorithms perform consistently
better than other?

RQ1c: How much data must be set aside for training in
order to produce good classification results?

RQ2: Can unsupervised machine learning be used to classify
software issues as security related or non-security re-
lated?

RQ3: How does the performance of supervised and unsu-
pervised machine learning algorithms compare when
classifying software bug reports?

The main findings of our work include:

• Multiple learning systems, consisting of different com-
binations of feature vectors and supervised learning
algorithms, performed well. The level of performance,
however, does depend on the dataset.

– Feature vectors do not affect significantly the clas-
sification performance.

– Some learning algorithms performed better than
others, but the best performing algorithm was
different depending not only on the feature vector,
but also on the dataset. In general, the Naive Bayes
algorithm performed consistently well, among or
close to the best performing algorithms across all
feature vectors and datasets.

– The supervised classification was just as good with
only 25% of the data used for training as with
using 90% for training (i.e., the standard 10-fold
cross validation).

• Unsupervised learning based on anomaly detection can
be used for bug report classification.

• The best unsupervised classification results were not
as good as the best supervised classification results.
It appears that the choice of the learning approach is
a tradeoff between better performance at expense of
initial effort invested in labeling at least a quarter of
the data.

The rest of the paper is organized as follows. The related
work is presented in section II. In section III we present the
details of our data mining approaches, including the data
extraction and preprocessing, feature vectors we used, the
proposed supervised and unsupervised learning approaches,
and the metrics used for evaluation of the performance. The
datasets and the manual labeling process used as ground
truth for evaluation of the learning performance are de-
scribed in section IV. The results of the supervised and
unsupervised learning and their comparison are detailed in

section V, followed by the description of the threats to
validity in section VI. The paper is concluded in section VII.

II. RELATED WORK

Issue tracking systems contain unstructured text, and
therefore text mining can be used to automatically process
data from such systems. Multiple papers explored bug report
classification, with a focus on different aspects such as
identification of duplicates [1], classification of severity level
[2], assignment of bugs to the most suitable development
team [3], classification of issues to bugs and other activities
[12], [13], classification to different types of bugs (i.e.,
standard, function, GUI, and logic) [4], and topic modeling
to extract trends in testing and operational failures [5]. None
of these works considered security aspects of software bugs.

Several works treated the source code as textual document
and used text mining to classify the software units (e.g., files
or components) as vulnerable [14], [15]. Hovsepyan et al.
extracted feature vectors that contained the term frequencies
(TF) from the source code and used SVM to classify which
files contain vulnerabilities [14]. The dataset used in this
work was the source code of the K9 mail client for Android
mobile device applications. The static code analysis tool
Fortify [16] was used to label the source code vulnerabilities
and the following classification performance metrics were
reported: recall of 88%, precision of 85%, and accuracy
of 87%. Note, however, that these performance metrics
were not with respect to the true class, but were based
on comparison with the labels assigned by Fortify, which,
as all static code analysis tools, does not detect 100% of
vulnerabilities and has a very high false positive rate. In
some sense, these results indicate that the method proposed
in [14] performed similarly to Fortify. In another work,
Scandariato et al. tried to identify components that are likely
to contain vulnerabilities using term frequencies extracted
from the source code along with Naive Bayes or Random
Forest learners [15]. Using a dataset of twenty Android
application, the prediction models led to recall between 48%
and 100% and precision between 62% and 100%.

Somewhat related work by Perl et al. was focused on
identification of Vulnerability Contributing Commits (VCC)
within a version control system [17]. For this purpose, they
mapped the CVEs and the commits leading to them, creating
a vulnerable commit database. Based on that database, an
SVM classifier was used to flag suspicious commits. This
work used a dataset of 66 projects that used either C or C++
programming language. The authors stated that, compared
to Flawfinder [18], their method cut the number of false
positives in half, while maintaining a recall between 26%
and 48% and precision between 11% and 56%.

Several papers were focused on some security aspects of
software bugs [19], [20], [21], [22]. Wang et al. proposed
a methodology for classification of vulnerabilities accord-
ingly to their security types using Bayesian Networks [19].

2



The security types were defined as a subset of the NVD
classification schema, and each vulnerability was classified
as one of these types based on its CVSS Access Vector,
Access Complexity, Authentication, Confidentiality Impact,
Integrity Impact, and Availability Impact [23]. The prob-
ability distribution of vulnerabilities was calculated from
all vulnerabilities in the NVD related to Firefox, but no
performance metrics were reported.

Gegick et al. used text mining on the descriptions of bug
reports to train a statistical model on manually-labeled bug
reports to identify security bug reports that were mislabeled
as non security bug reports [20]. The SAS text mining tool
was used for the feature vector creation, as well as prediction
in a form of singular value decomposition (SVD). The
bug reports data from four large Cisco projects were used
as datasets. The text mining model identified 77% of the
security bug reports which were manually mislabeled as non-
security bug reports by bug reporters. This system, however,
had a very high false positive rate, varying from 27% to 96%.
In a similar work, Wright et al. conducted an experiment to
estimate the number of misclassified bugs yet to be identified
as vulnerabilities in the MySQL bug report database [21]. To
determine which issues were misclassified, a scoring system
was developed. The experiment was initially performed on a
subset of issues from the MySQL bug database, and after the
scoring, the results were extrapolated into the entire dataset.

The closest to our work are three papers focused on
classification of software bugs to security and non-security
related [6], [7], and [8]. Often times, bugs are only identified
as vulnerabilities long after the bug has been made public
[6]. Wijayasekara et al. denoted such issues as Hidden
Impact Bugs (HIBs) and, based on their previous work
[22], created a system that can identify such bugs [6]. The
authors first identified the CVEs for the Linux kernel and
then gathered the corresponding bug reports. A basic “bag
of words” approach in combination with Naive Bayes, Naive
Bayes Multinomial, and Decision Tree classifiers were used,
resulting in recall of 2%, 9%, and 40% and precision of 88%,
78%, and 28%, respectively.

Another related work by Behl et al. used the Term
Frequency-Inverse Document Frequency (TF-IDF) along
with an undefined “vector space model,” and compared the
performance of this approach to an approach using the Naive
Bayes algorithm [7]. The reported accuracy and precision
(96% and 93%, respectively) were only marginally better
than for the Naive Bayes. It should be noted, however,
that neither accuracy nor precision, which were the only
metrics reported in [7], represent well the ability to clas-
sify bugs as security or not-security related. Specifically,
both performance metrics can give misleading results for
imbalanced datasets, which are expected in this situation.
For cases like this, the recall and false alarm rate are much
more appropriate performance metrics than accuracy and
precision.

Figure 1. Overview of the proposed data mining approaches

A recent work by Peters et al. proposed a framework
called FARSEC, which integrated filtering and ranking for
security bug report prediction [8]. Before building prediction
models FARSEC identified and removed non-security bug
reports with security related keywords. This filtering step
was aimed at decreasing the false positive predictions. For
prediction models FARSEC used the TF-IDF in combination
with five machine learning algorithms: Random Forest,
Naive Bayes, Logistic Regression, Multilayer Perceptron,
and k-Nearest Neighbor. Finally, the results of the prediction
models were used to create ranked lists of bug reports, with
an expectation that security bug reports would be closer to
the top of the ranked lists than to the bottom. FARSEC was
evaluated on bug reports from Chromium and four Apache
projects.

Common to the related works [6], [7], and [8] are the facts
that (1) they all use prediction models based on supervised
machine learning algorithms that require labeled bug reports
for training and (2) none of these works experimented with
the size of the training set with a goal to find the smallest
training set that produces good prediction results.

III. PROPOSED DATA MINING APPROACHES

The overview of the proposed data mining approaches is
presented in Figure 1.

A. Data Extraction and Preprocessing

We approached the classification of bug reports as a
text mining problem. First, the “Title”, “Subject”, and
“Description” of each bug report were extracted, and then
concatenated into a single string. The preprocessing steps
included removing all non-alphanumeric characters using a
regular expression in Python, converting all characters to
lowercase, removing stop words1 using python’s Natural
Language Toolkit (NLTK) English stop word list [24], and

1Stop words are words that do not contain important information to be
used in the classification. Examples of stop words include: “a”, “and”,
“but”, “how”, “or”, and “what.”

3



then stemming2 each word with Python’s Lovins stemming
algorithm implementation [25].

After the preprocessing steps were completed, we were
left with one string for each bug report in the dataset. The
features to be used for the data mining were then extracted
from these strings as described next.

B. Feature Vectors

The traditional terminology used in text mining includes:
terms, documents, and corpus. A term is a word within
a document, that is, in our case a word in the string
representation of a bug report. A document is a collection
of terms, that is, in our case the string representing a bug
report. A corpus is a collection of documents, that is, in our
case the collection of strings representing all bug reports
from a specific dataset. It follows that in this work there
are three corpora, one for each dataset, which are denoted
in the same manor as the datasets they originated from:
Ground Mission IV&V Issues, Flight Mission IV&V Issues,
and Flight Mission Developers Issues.

To conduct automated classification, it is necessary to
extract feature vectors for each document. Each location in
the feature vector represents a term, and the numeric value
at that location measures the occurrence of that term in the
document. The collection of terms (i.e., words) represented
in feature vectors are referred to as the vocabulary. Select-
ing a large vocabulary would improve the coverage, and
therefore the amount of analyzed terms extracted from each
document; however, this leads to a very large dimensionality,
increasing complexity, and could result in unnecessary noise.
In our case, it appeared that most of the textual descriptions
in bug reports were focused on how the bugs were found,
their manifestation, and how they were fixed. Consequently,
the security aspects were often a small detail within each
bug report, or were not present at all. Because of this, using
a vocabulary that consist of every term in the corpus, which
is a typical approach, was not suitable. In particular, out
of around two million terms in the vocabulary, only a few
terms were related to the security aspect and the rest was
a noise from the perspective of automated classification.
Therefore, we used a smaller vocabulary extracted from the
CWE-888 view, which minimized the amount of noise in
feature vectors.

In this paper we use three types of feature vectors: Binary
Bag-of-Words Frequency (BF), Term Frequency (TF), and
Term Frequency-Inverse Document Frequency (TF-IDF).
The Binary Bag-of-Words Frequency (BF) is the most
simplistic feature vector, defined by equation (1):

BF (term) =

{
0, if f(term) = 0
1, if f(term) > 0

(1)

2Stemming is the process of reducing inflected (or sometimes derived)
words to their word stem, base or root form.

where BF (term) is the binary bag-of-words frequency of a
term and f (term) represents the frequency (i.e., number of
occurrences) of the term in the document. In other words,
BF method only determines if each term in the vocabulary
is in the document or not, that is, BF of any term can be
either 1 or 0.

The Term Frequency (TF) feature extraction method re-
tains more information about the terms in a document than
the BF. As shown in equation (2), instead of 1s and 0s
corresponding to the presence or absence of a term, TF
records the frequency (or number of occurrences) of a term
in the document:

TF (term) = f(term). (2)

The Term Frequency-Inverse Document Frequency (TF-
IDF) feature vector, defined by the equation (3), is an exten-
sion of the TF feature extraction method, that weights the
importance of a term in a specific document inversely to how
often it appears in other documents. This is done to decrease
the effect of terms that appear in many documents, because
such terms likely contain little discriminatory information.

TF-IDF(term) = f(term) · log n

N(term)
(3)

where n is the total number of documents, and N(term) is
the number of documents that the specific term appears in.

A common variation to these feature vectors is to exclude
any terms that do not appear a minimum number of times
in a document. This minimum frequency is often used to
reduce the noise in a dataset. However, our work is focused
on bug reports which often include only one word (i.e., term)
pertaining to the security aspects of the bug. Therefore, to
avoid loosing important information, no minimum frequency
was set.

C. Proposed supervised classification

A supervised learning uses labeled training data to infer a
model that describes the output from the input data. In this
work we used the following supervised learning algorithms:
Bayesian Network (BN), k-Nearest Neighbor (kNN), Naive
Bayes (NB), Naive Bayes Multinomial (NBM), Random
Forest (RF), and Support Vector Machine (SVM).

Here we define a (machine) learning system as a com-
bination of a type of feature vector (described in Section
III-B) and a supervised classifiers (listed earlier). Each
learning system is denoted as FeatureVector Classifier. For
example, if the Term Frequency (TF) feature vector was used
in combination with the Naive Bayes Multinomial (NBM)
classifier, this learning system is denoted as TF NBM.

To conduct supervised learning, each corpus has to be
separated into two non-overlapping sets: training and testing.
To achieve this, we first used the typical data mining
approach based on 10-fold cross validation. This means the
given dataset was split into ten equal folds (i.e., subsets),

4



Table I. CONFUSION MATRIX

Predicted class
Security bug report Non-security bug report

Actual class Security bug report Count of True Positives (TP) Count of False Negatives (FN)
Non-security bug report Count of False Positives (FP) Count of True Negatives (TN)

and then the training was performed on nine of them, and
the testing was performed on the remaining tenth fold. This
was repeated ten times, with each fold used exactly once for
testing, and the average values of the performance metrics
are reported.

Next, we explored the smallest amount of data that must
be set aside for training in order to produce good classifica-
tion results. This research question was motivated by the fact
that the standard 10-fold cross validation learning approach
has limited practical value because it reflects the situation
in which a human has completed the manual labeling of
90% of the data before attempting to do predictive classifi-
cation. Therefore, we conducted experiments exploring the
feasibility of classifying the bug reports on smaller subsets
of labeled data. For each of the datasets, we tested if the
learning systems can correctly classify the bug reports to
security and non-security related when using 90%, 75%,
50%, and 25% subsets for training, and the remaining part
for testing. The experiments for 90%, 75%, and 50% were
performed using cross validation (that is, 10-fold, 4-fold, and
2-fold, respectively) and the results were averaged. For the
25% experiment, since a cross validation approach would
not work, the experiments were performed using random
stratified selection with four repetitions. The results from
the four experiments were then averaged.

D. Proposed unsupervised classification

Unsupervised learning infers a function to describe hidden
structure in the data from unlabeled data. The use of unsu-
pervised learning approach was motivated by two drawbacks
of supervised learning. First, supervised learning algorithms
require manual labeling of data to be used for training (i.e.,
building the model), which then can be used for testing (i.e.,
classification) of the unseen data points. The manual labeling
may require significant time and effort. Second, there is a
very high likelihood that not all vulnerability classes will
have significant numbers or even be present in the training
set. Obviously, if a vulnerability class is never presented to a
classifier during the training, it is unlikely that the classifier
will correctly classify data points in the testing set belonging
to that class.

In order to avoid the time consuming and costly manual
labeling as well as guarantee that all classes have been
properly defined and presented to a classifier, we propose
a novel unsupervised machine learning approach based on
anomaly detection. Anomaly detection refers to the problem
of finding patterns in data that deviate from ‘normal’ [26].

In our case the CWEs descriptions given in the CWE-
888 view are considered ‘normal’ and the unsupervised
machine learning method (for the purpose of classification)
identifies the deviation from ‘normal’ and classifies those
documents (i.e.. bug reports) as non-security related. In
other words, we set the classification problem as one-class
classification. Basically, the feature vector A extracted from
CWE-888 descriptions defines the ‘normal’ behavior (in our
case security related bugs). We use the cosine similarity
distance measure defined by equation (4) to determine if the
feature vector B of a document (i.e., bug report) is similar
to the ‘normal’ (i.e., security related bugs as defined by
the CWE descriptions) or not. The cosine similarity simply
measures the distance (angle) between the feature vectors of
two documents, and if the distance is greater than a threshold
then the bug report is classified as non-security related (i.e.,
deviates from the ‘normal’). Otherwise, it is deemed to be
similar to CWE descriptions and is classified as security
related bug report.

similarity(A,B) =
A ·B

∥A∥ · ∥B∥
=

∑n
i=1 AiBi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

(4)
Instead of guesstimating the value of the threshold, we

adopted the method for threshold selection proposed in [27],
which is based on testing a wide range of thresholds on the
validation data, selecting the threshold which gives the best
performance, and using it for measuring the similarity on
the testing data. For this purpose, each corpus (i.e., dataset)
was separated into two subsets, where one subset was used
as the validation set and the other as the testing set. It should
be noted that the threshold selection was based on the G-
Score metric (defined with equation (10) in section III-E)
because it integrates in one number the two most important
performance metrics: recall and probability of false alarm.

E. Performance Evaluation

The metrics used for performance evaluation are derived
from the confusion matrix shown in Table I. The true (i.e.,
actual) class for this work is security related bug reports.

We compute the following metrics which assess different
aspects of the classification:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Recall =
TP

TP + FN
(6)

5



PFA =
FP

TN + FP
(7)

Precision =
TP

TP + FP
(8)

The accuracy, given with (5), provides the percentage of
bug reports that are classified correctly with respect to all
bug reports. Accuracy has a limited value in cases when the
classes are imbalanced, i.e., when one of the classes is much
smaller than the other. Since the class of interest in our case
is the security related bug reports, recall defined by equation
(6), accounts for the probability of detecting a security
related bug report (i.e., is defined as the ratio of correctly
classified security related bug reports to all security related
bug reports). Probability of false alarm (PFA), defined by (7),
is the ratio of non-security related bug reports misclassified
as security related bug reports to all non-security related bug
reports. Precision, defined by (8), determines the fraction of
bug reports correctly classified as security related out of all
bug reports classified as security related. Accuracy, recall,
probability of false alarm, and precision values are in the
interval [0, 1]; a good classifier has high accuracy, recall,
and precision and a low probability of false alarm.

The F-Score is the harmonic mean between precision
and recall (see equation (9)), which describes how well
an automated system is able to balance the performance
between precision and recall. Ideally, we want both recall
and precision to be 1, which leads to F-score equal to 1. If
either one is 0, F-score is 0 by definition.

F -Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(9)

The G-Score is the harmonic mean between Recall and
(1-PFA), as given by equation (10). High G-score indicates
a good classifier, with high Recall and low PFA. The ideal
G-score of 1 is obtained when the Recall = 1 and PFA =
0. Note that G-Score accounts for the two most important
metrics in our work – the Recall and PFA – and therefore
it is used as criteria to compare how good different learning
systems are, as well as for the selection of the threshold
used in the unsupervised learning (see section III-D).

G-Score = 2 ∗ Recall ∗ (1− PFA)

Recall + (1− PFA)
(10)

IV. DESCRIPTION OF THE DATASETS AND THE MANUAL
LABELING APPROACH

The three datasets from NASA utilized in this work were
created by extracting relevant information from the IV&V
issues of a ground mission, and both IV&V issues and
developers’ issues of a flight mission. For all three datasets
only the “closed” bug reports from their corresponding issue
tracking systems were included. The details about these
datasets are provided next.

The first dataset, referred to as Ground Mission IV&V
Issues in this paper, was extracted from the IV&V issue

tracking system of a NASA ground mission. The ground
mission software has 1.36 million source lines of code
and 1,779 bug reports were created in the issue tracking
system over four years. For this mission, the IV&V analysts
specifically considered the security aspects of the mission
and therefore the relevant bug report descriptions contained
security related information. The IV&V analysts explicitly
marked 350 of the bug reports as security related. Out of
these we included only 133 in the dataset because the re-
maining security issues were tagged as testing issues which
do not deal with the actual software under investigation.

The second dataset, referred to as Flight Mission IV&V
Issues in this paper, consists of the IV&V issues extracted
from the issue tracking system of a NASA flight mission.
The flight mission software has 924 thousand source lines
of code. Over four years, a total of 506 bug reports were
entered in the issue tracking system, out of which 383 bug
reports remained after the removal of bug reports marked as
“Withdrawn” or “Not an Issue”. Even though this dataset
was also created by IV&V analysts, security aspects of
bug reports were not explicitly considered and bug reports’
descriptions contained little security related information.
Instead, descriptions were mainly addressing aspects of
software operation.

The third dataset, which is referred to as Flight Mission
Developers Issues, consists of issues entered by software de-
velopers in the developers’ issue tracking system of the same
NASA flight mission as the Flight Mission IV&V Issues. In
this issue tracking system a total of 1,947 Developer Change
Requests (DCRs) were created over five and a half years,
out of which 573 DCRs were tagged as “Defects”. (The
remaining issues were marked either as “Change Requests”
or some other non bug related type, and therefore were not
included in the dataset used in this paper.) Since this dataset
was created by the developers (instead by IV&V analysts)
the textual descriptions were much more focused on the
software operation than security aspects. As in case of the
Flight Mission IV&V Issues dataset, no bug reports were
explicitly marked as security related.

In order to be able to use supervised learning algorithms
and have a ground truth for evaluation of both suprevised
and unsupervised classification performance, we need the
bug reports from all three datasets to be labeled as security
related or non-security related. As mentioned earlier, only
the bug reports from the Ground Mission IV&V Issues
dataset were explicitly marked as security or non-security
related. The bug reports of the two flight missing datasets
(i.e., IV&V issues and Developers issues) were manually
classified (i.e., labeled) by our research team in order to be
able to build the vulnerability profiles presented in [11]. Here
we only briefly describe our manual labeling approach. For
details the readers are referred to our previous work [11],
which was focused on studying the trends of the software
vulnerabilities in mission critical software.

6



The manual labeling (i.e., classification) of each software
bug was based on the information provided in the textual
fields of the issue tracking systems and was guided by the
definitions of the CWE-888 primary and secondary classes
[10]. Several examples of manual bug reports classification
include:

• A bug report with following description “. . . Line 277:
Null pointer dereference of ‘getServiceStatusInfo(...)’
where null is returned from a method,” was classified
as the CWE-888 primary class “Memory Access” and
“Faulty Pointer Use” secondary class.

• A bug report with the description “. . . The stream is
opened on line 603 of file1. If an exception were to
occur at any point before line 613 where it is closed,
then the ‘try’ would exit and the stream would not
be closed,” was classified as the CWE-888 primary
class “Resource Management” and “Failure to Release
Resource” secondary class.

• A bug report with the description “. . . Table 1-11 lists
XYZ as a unidirectional interfaces, but Figure 1-4
shows this connection as bidirectional,” was classified
as non-security related.

Note that, similarly to static code analysis tools, we used
a conservative labeling (i.e., classification) approach and
treated as security related every bug report to which we
could assign a CWE-888 class.

Using the above described manual labeling approach we
labeled as security related 157 bug reports (out of 383 bug
reports) in the Flight Mission IV&V Issues dataset and 374
bug reports (out of 573) in the Flight Mission Developers
Issues dataset. Table II summarizes the basic facts of the two
missions and the three datasets used for evaluation of the
data mining approaches for security bug reports prediction.

Table II. BASIC FACTS ABOUT THE THREE DATASETS

Total # Security
Mission Size closed bug related bug Dataset

reports reports
Ground 1.36 MLOC 1,779 133 Ground mission IV&V
Flight 924 KLOC 383 157 Flight mission IV&V

573 374 Flight mission Developers

V. RESULTS

A. Results of supervised learning

In this section we present the result of the supervised ma-
chine learning approach described in section III-C. We start
with RQ1, which is focused on exploring if supervised ma-
chine learning can be used to successfully classify software
bug reports as security related or non-security related. In this
part, we use all combinations of feature vectors presented in
Section III-B and supervised classification algorithms listed
in Section III-C on each of the three datasets.

Table III presents the classification performance for each
dataset when using Binary Bag-of-Words feature vector
(BF) in combination with each supervised classifier. For
each dataset, the column corresponding to the classifier that

performed the best with respect to G-Score is given in
bold. Interestingly, but not unexpectedly, the best performing
classifier was different for each dataset. Specifically, the best
classifiers for the Ground Mission IV&V Issues dataset,
Flight Mission IV&V Issues dataset, and Flight Mission
Developers Issues dataset were the Bayesian Network, Ran-
dom Forest, and Naive Bayes, respectively. Furthermore,
some classifiers, such as Naive Bayes, had consistently
good performance across all datasets. Other classifiers, such
as Bayesian Network, performed well on one dataset, but
poorly on other dataset(s), including G-Score of 0 on the
Flight Mission Developers Issues dataset.

Table IV presents the classification performance for each
dataset when using the Term Frequency (TF) feature extrac-
tion method in combination with each supervised classifier.
(Again, for each dataset, the column corresponding to the
best classifier with respect to G-Score is shown in bold.)
In this case, the Naive Bayes Multinomial (NBM) classifier
performed the best for the Ground Mission IV&V Issues
dataset, while the Support Vector Machine (SVM) classifier
was the best for both Flight Mission datasets. Consistently
with the use of BF feature extraction method (see Table
III) some classifiers performed consistently good across all
datasets, while the performance of other classifiers varied
significantly over different datasets, from very good to very
poor.

Table V presents the classification performance for each
dataset when using the Term Frequency-Inverse Document
Frequency (TF-IDF) feature vector in combination with
each supervised classifier. (For each dataset, the column
corresponding to the classifier that performed the best with
respect to G-Score is shown in bold.) In this case, similarly
as in case of BF feature extraction method, the best per-
forming classifier was different for each dataset. Specifically,
the Bayesian Network (BN) performed the best on the
Ground Mission IV&V Issues dataset, the Random Forest
(RF) classifier performed the best on the Flight Mission
IV&V Issues dataset, and the Naive Bayes (NB) classifier
provided the best results on the Flight Mission Developers
Issues dataset. Some classifiers performed consistently good
across all datasets, while the performance of other classifiers
varied significantly over different datasets, from very good
to very poor.

To address RQ1, based on the results presented so far, it
appears that supervised learning can be used to successfully
classify software bug reports to security related and non-
security related. However, the results heavily depend on the
datasets. In particular, regardless of the learning system,
the results with respect to G-Score and other performance
metrics were the best for the Ground Mission IV&V Issues
dataset, followed by the Flight Mission IV&V Issues dataset.
For these two datasets the classification was very successful.
The worst classification performance was for the Flight
Mission Developers Issues dataset. Note that the recall

7



Table III. CLASSIFICATION PERFORMANCE OF BF FEATURE VECTOR AND SELECTED SUPERVISED CLASSIFIERS ACROSS ALL THREE DATASETS. FOR
EACH DATASET, THE COLUMN CORRESPONDING TO THE CLASSIFIER THAT PERFORMED THE BEST WITH RESPECT TO G-SCORE IS SHOWN IN BOLD.

Ground
Mission
IV&V
Issues

Supervised
System BF BN BF kNN BF NB BF NBM BF RF BF SVM

Accuracy 87.4% 94.6% 87.2% 88.7% 94.8% 94.3%
Precision 37.0% 65.4% 36.7% 39.4% 80.3% 70.7%

Recall 93.4% 62.5% 93.4% 89.7% 41.9% 42.6%
PFA 13.1% 2.7% 13.3% 11.4% 0.9% 1.5%

F-Score 0.530 0.639 0.527 0.547 0.551 0.532
G-Score 0.900 0.761 0.899 0.891 0.589 0.595

Flight
Mission
IV&V
Issues

Supervised
System BF BN BF kNN BF NB BF NBM BF RF BF SVM

Accuracy 69.9% 76.2% 70.7% 80.1% 84.0% 81.4%
Precision 58.3% 70.4% 59.1% 70.6% 80.8% 79.1%

Recall 94.3% 72.6% 93.0% 88.5% 80.3% 74.5%
PFA 47.1% 21.3% 44.9% 25.8% 13.3% 13.8%

F-Score 0.674 0.715 0.723 0.785 0.805 0.767
G-Score 0.678 0.755 0.692 0.807 0.834 0.799

Flight
Mission

Developers
Issues

Supervised
System BF BN BF kNN BF NB BF NBM BF RF BF SVM

Accuracy 65.8% 66.9% 66.9% 70.1% 69.5% 67.1%
Precision 65.8% 69.4% 77.7% 70.2% 69.9% 74.7%

Recall 100.0% 89.0% 69.8% 94.6% 94.4% 75.7%
PFA 100.0% 75.5% 38.6% 77.2% 78.3% 49.5%

F-Score 0.794 0.780 0.735 0.806 0.803 0.752
G-Score 0.000 0.384 0.653 0.367 0.353 0.606

Table IV. CLASSIFICATION PERFORMANCE OF TF FEATURE VECTOR AND SELECTED SUPERVISED CLASSIFIERS ACROSS ALL THREE DATASETS. FOR
EACH DATASET, THE COLUMN CORRESPONDING TO THE CLASSIFIER THAT PERFORMED THE BEST WITH RESPECT TO G-SCORE IS SHOWN IN BOLD.

Ground
Mission
IV&V
Issues

Supervised
System TF BN TF kNN TF NB TF NBM TF RF TF SVM

Accuracy 87.4% 93.5% 85.2% 87.9% 94.9% 94.1%
Precision 37.1% 57.3% 32.0% 38.0% 82.6% 66.0%

Recall 93.4% 60.3% 83.1% 93.4% 41.9% 47.1%
PFA 13.1% 3.7% 14.6% 12.6% 0.7% 2.0%

F-Score 0.531 0.588 0.462 0.540 0.556 0.549
G-Score 0.900 0.742 0.842 0.903 0.589 0.636

Flight
Mission
IV&V
Issues

Supervised
System TF BN TF kNN TF NB TF NBM TF RF TF SVM

Accuracy 69.6% 70.9% 75.1% 78.3% 80.4% 83.8%
Precision 57.9% 60.3% 67.8% 67.8% 75.9% 78.8%

Recall 95.5% 86.0% 75.2% 89.8% 76.4% 82.8%
PFA 48.4% 39.6% 24.9% 29.8% 16.9% 15.6%

F-Score 0.721 0.709 0.713 0.773 0.762 0.807
G-Score 0.670 0.710 0.751 0.788 0.796 0.836

Flight
Mission

Developers
Issues

Supervised
System TF BN TF kNN TF NB TF NBM TF RF TF SVM

Accuracy 65.8% 61.0% 66.9% 70.6% 70.4% 72.3%
Precision 65.8% 71.7% 75.0% 73.6% 71.0% 76.8%

Recall 100.0% 67.2% 74.6% 86.4% 93.2% 83.1%
PFA 100.0% 51.1% 47.8% 59.8% 73.4% 48.4%

F-Score 0.794 0.694 0.748 0.795 0.806 0.798
G-Score 0.000 0.566 0.614 0.549 0.414 0.637

values for the Flight Mission Developers Issues dataset were
also very good, but the high probability of false alarm
(PFA) led to much lower G-Score than for the other two
datasets. These results were somewhat expected having in
mind that, as described in Section IV, the textual fields of
the Ground Mission IV&V bug reports had more security
relevant information than the other two datsets; the Flight
Mission Developers’ bug reports had least security related
information.

After presenting the results for all combinations of feature

vectors and classifiers, we can address RQ1a and RQ1b,
which respectively are focused on exploring if some types
of feature vectors and supervised classifiers perform consis-
tently better than others. Based on the results presented in
Tables III, IV and V it can be concluded that:

• The type of feature vector did not affect the perfor-
mance of the learning systems significantly. BF and TF
performed similarly, while TF-IDF performed slightly
worse.

• Naive Bayes classifier performed consistently very well

8



Table V. CLASSIFICATION PERFORMANCE OF TF-IDF FEATURE VECTOR AND SELECTED SUPERVISED CLASSIFIERS ACROSS ALL THREE DATASETS.
FOR EACH DATASET, THE COLUMN CORRESPONDING TO THE CLASSIFIER THAT PERFORMED THE BEST WITH RESPECT TO G-SCORE IS SHOWN IN

BOLD.

Ground
Mission
IV&V
Issues

Supervised
System TFIDF BN TFIDF kNN TFIDF NB TFIDF NBM TFIDF RF TFIDF SVM

Accuracy 87.6% 93.9% 86.0% 92.8% 94.0% 90.2%
Precision 37.3% 61.7% 34.0% 90.0% 75.0% 40.7%

Recall 91.9% 54.4% 89.0% 6.6% 33.1% 61.0%
PFA 12.8% 2.8% 14.3% 0.1% 0.9% 7.4%

F-Score 0.531 0.578 0.492 0.123 0.459 0.488
G-Score 0.895 0.698 0.873 0.124 0.496 0.735

Flight
Mission
IV&V
Issues

Supervised
System TFIDF BN TFIDF kNN TFIDF NB TFIDF NBM TFIDF RF TFIDF SVM

Accuracy 70.2% 73.3% 79.3% 82.2% 82.5% 73.6%
Precision 58.4% 61.2% 71.2% 90.1% 80.0% 67.9%

Recall 94.9% 95.5% 83.4% 63.7% 76.4% 67.5%
PFA 47.1% 42.2% 23.6% 4.9% 13.3% 22.2%

F-Score 0.723 0.746 0.768 0.746 0.782 0.677
G-Score 0.679 0.720 0.797 0.763 0.812 0.723

Flight
Mission

Developers
Issues

Supervised
System TFIDF BN TFIDF kNN TFIDF NB TFIDF NBM TFIDF RF TFIDF SVM

Accuracy 68.0% 64.9% 62.3% 66.0% 70.6% 59.9%
Precision 48.9% 66.7% 73.4% 65.9% 71.2% 73.0%

Recall 94.4% 93.2% 66.9% 100.0% 92.9% 61.9%
PFA 82.6% 89.7% 46.7% 99.5% 72.3% 44.0%

F-Score 0.795 0.777 0.700 0.795 0.806 0.670
G-Score 0.294 0.185 0.593 0.010 0.427 0.588

across all datasets, even though it was not always the
best performing classifier. Other classifiers (i.e., SVM
and NBM) had fairly consistent performance, but not
alaways among the best and as good as Naive Bayes
performance. Last but not least, Bayesian Network clas-
sifier performance varied significantly across datasets,
with the best performance for one of the datasets, but
very bad performance for other datasets.

Next, we present the results related to RQ1c, which is
focused on determining the amount of data that must be set
aside for training in order to produce good classification re-
sults. For this part of our study, we restricted the experiments
to the learning system consisting of the binary bag-of-words
feature vector (BF) and the Naive Bayes (NB) classifier as
it had consistently good performance across all datasets. As
shown in Table VI, the best performance with respect to the
G-Score for the Ground Mission IV&V Issues dataset was
when 90% of the dataset was used for training. However,
using less data for training, including as little as 25%, led
to almost as good performance as in the case of 90% of the
data used for training. Interestingly, for the Flight Mission
IV&V Issues dataset the best performance was when using
only 25% of the data for training. Similarity, for the Flight
Mission Developers Issues dataset the best performance was
achieved when only 50% of the data were used for training,
with insignificant performance degradation when only 25%
of data was used for training. This is an important results
of our study, with a significant practical value. It shows
that the learner system is able to produce similar or even
better classification results with only 25% of the data being
manually labeled and used for training (i.e., building the
classification model).

Table VI. PERFORMANCE OF BF NB ON DIFFERENT AMOUNTS OF
TRAINING DATA, FOR ALL THREE DATASETS. FOR EACH DATASET, THE
COLUMN CORRESPONDING TO THE CLASSIFIER THAT PERFORMED THE

BEST WITH RESPECT TO G-SCORE IS SHOWN IN BOLD.

Ground Mission
IV&V Issues

% of Issues
for Training 90% 75% 50% 25%

Accuracy 87.2% 86.3% 85.6% 86.7%
Precision 36.7% 38.9% 34.0% 36.9%
Recall 93.4% 92.5% 94.1% 93.5%
PFA 13.3% 14.3% 15.1% 13.9%
F-Score 0.527 0.548 0.500 0.529
G-Score 0.899 0.890 0.893 0.896

Flight Mission
IV&V Issues

% of Issues
for Training 90% 75% 50% 25%

Accuracy 70.7% 71.6% 76.4% 77.3%
Precision 59.1% 83.7% 87.5% 90.5%
Recall 93.0% 54.2% 66.7% 68.3%
PFA 44.9% 10.6% 11.6% 10.1%
F-Score 0.723 0.658 0.757 0.778
G-Score 0.692 0.675 0.760 0.776

Flight Mission
Developers Issues

% of Issues
for Training 90% 75% 50% 25%

Accuracy 66.9% 62.7% 65.1% 66.0%
Precision 77.7% 80.3% 78.5% 75.9%
Recall 69.8% 58.9% 64.2% 71.1%
PFA 38.6% 29.5% 33.3% 43.8%
F-Score 0.735 0.680 0.706 0.734
G-Score 0.653 0.642 0.654 0.628

B. Results of unsupervised learning

In this section we present the results related to RQ2, which
is focused on exploring if unsupervised machine learning
approach described in section III-D can be used to classify
software bug reports as security related or non-security
related. Table VII shows the results of the unsupervised
learning, using the BF, TF, and TF-IDF feature vectors and
cosine similarity, for all three datasets. The threshold values
selected from the validation sets are also shown. It should
be noted that the threshold values did not very significantly
across different feature vectors or different datasets.

The results showed that TF-IDF feature vector led to

9



better G-Score in case of the Ground Mission IV&V Issues
dataset, while TF feature vector led to better G-Score for
both Flight Mission datasets. Unlike in the case of super-
vised learning, BF feature vector underperformed compared
to the TF and TF-IDF featured vectors. Consistently with
supervised learning results presented in Section V-A, the
unsupervised classification performance differed across the
three datasets, with the best performance in the case of
Ground Mission IV&V Issues dataset and worst performance
for the Flight Mission Developers Issues dataset. In both
cases this is due to the amount of security related informa-
tion given in the bug reports, as discussed in Section IV.

We also used the Euclidean distance as the distance
measure for the one-class classification. The results were
consistent and very close to the ones based on using the
Cosine Similarity. The only significant difference was the
fact that the thresholds values in the case of the Euclidean
Distance varied significantly across feature vectors, but not
across datasets, unlike the threshold values in the case of
Cosine Similarity which were consistent both across feature
vectors and different datasets.

C. Comparisons of supervised and unsupervised learning
performance

Next, we focus on comparing the performance of super-
vised and unsupervised classification of software bugs to
security related and non-security related, that is, address
RQ3. Table VIII compares the G-score values of the su-
pervised learning using the NB classifier (which showed
consistently good performance across the three datasets)
with the unsupervised learning based on Cosine Distance,
for the three types of feature vectors.

As expected, the unsupervised learning performed slightly
worse than the best supervised learning systems, which
performed consistently well across datasets, such as the
ones including the NB classifier. Note however, that the
unsupervised learning does not require manual labeling of
the data. Having in mind that supervised learning performed
very well with only 25% of the data being labeled for
training and provided somewhat better results, the choice
of the learning approach becomes a tradeoff between better
results at expense of initial effort invested in labeling one
quarter of the data.

VI. THREATS TO VALIDITY

Construct validity is concerned with whether we are
measuring what we intend to measure. Because of the issue
tracking systems purpose, most of the textual descriptions
in bug reports are focused on how the bugs were found,
their manifestation, and how they were fixed. Consequently,
the security aspects of a software bug description were
often a small detail within each bug report, or were not
even present. Because of this, each feature vector contained
only a very few terms (as small as one) related to the

security aspect and the rest was noise from the perspective of
automated classification. We attempted to address this threat
by using a vocabulary extracted from the CWE-888 view,
which minimized the amount of noise in feature vectors.
This approach, however, may have a drawback related to
the terminology used in bug reports. Specifically, if the
documents being classified use security related terminology
that does not exist in the CWE-888 view, then those terms
are not being extracted, and therefore would not affect the
classification. Based on the manual classification of each bug
report, which we completed as a part of our prior work [11]
and used as a ground truth in this paper, this did not appear
to be the case in our datasets.

Internal validity threats are concerned with unknown
influences that may affect the independent variables. One of
the major concerns to the internal validity is data quality.
Some guarantee for the quality and consistency of our
datasets are due to the fact that NASA missions follow high
record keeping standards. As described in section IV, for
the two Flight mission datasets the descriptions of software
bug reports did not explicitly address the potential security
aspects of software bugs, which therefore could not be
accounted for in our analysis.

Conclusion validity threats impact the ability to draw
correct conclusions. Quantifying and comparing the perfor-
mance of learning systems are difficult tasks because many
different performance metrics exist that reflect different as-
pects of the performance. In this work we report all metrics,
but used the G-Score as the main metric for comparison of
the automated classifications. This is due to the fact that
G-Score integrates in one number the two most important
performance metrics: recall and probability of false alarm.
(High G-Score means a good learning system, with high
recall and low probability of false alarm.)

External validity is concerned with the ability to gener-
alize results. The facts that (1) this study is based on two
large NASA missions containing around one million lines of
code each and (2) the missions were developed by different
teams over multiple years, allow for some degree of external
validation. However, we do not claim that the findings of this
paper would be valid for other software systems. Therefore,
the external validity should be established by future studies
that will use other software products as case studies.

VII. CONCLUSION

While multiple prior works used text mining for automat-
ing different tasks related to software bug reports, very
little work exists on using text-based prediction models
to automatically identify security related bug reports. This
paper is focused on automated classification of software bug
reports to security related and non-security related, using
both supervised and unsupervised approaches.

For both approaches we used three types of feature vec-
tors: Binary Bag-of-Words Frequency (BF), Term Frequency

10



Table VII. UNSUPERVISED LEARNING PERFORMANCE USING COSINE SIMILARITY, FOR ALL THREE DATASETS

Dataset Ground Mission
IV&V Issues

Flight Mission
IV&V Issues

Flight Mission
Developers Issues

Feature Extraction
Method BF TF TF-IDF BF TF TF-IDF BF TF TF-IDF

Selected Threshold 0.305 0.286 0.263 0.283 0.216 0.235 0.321 0.260 0.220
Accuracy 62.5% 64.3% 73.0% 64.9% 67.8% 49.2% 50.4% 55.4% 51.7%
Precision 12.6% 15.0% 17.7% 57.5% 58.1% 41.2% 70.2% 69.3% 65.9%
Recall 66.2% 78.7% 69.9% 56.1% 77.7% 55.4% 42.7% 57.9% 55.1%
PFA 37.8% 36.9% 26.7% 28.9% 39.1% 55.1% 34.8% 49.4% 54.9%
F-Score 0.212 0.252 0.283 0.568 0.665 0.473 0.516% 0.631 0.600
G-Score 0.641 0.700 0.715 0.627 0.683 0.496 0.531% 0.540 0.496

Table VIII. PERFORMANCE COMPARISON OF SUPERVISED LEARNING WITH NB CLASSIFIER (USING 10-CROSS VALIDATION) AND UNSUPERVISED
LEARNING WITH COSINE SIMILARITY, FOR ALL THREE DATASETS

Dataset Ground Mission
IV&V Issues

Flight Mission
IV&V Issues

Flight Mission
Developer Issues

Feature Extraction
Method BF TF TF-IDF BF TF TF-IDF BF TF TF-IDF

Supervised G-Score 0.899 0.842 0.873 0.692 0.751 0.797 0.653 0.614 0.593
Unsupervised G-Score 0.641 0.700 0.715 0.627 0.683 0.496 0.531 0.540 0.496

(TF), and Term Frequency-Inverse Document Frequency
(TF-IDF). For the supervised approach, we used multi-
ple learning algorithms (i.e., Bayesian Network, k-Nearest
Neighbor, Naive Bayes, Naive Bayes Multinomial, Random
Forest, and Support Vector Machine) in combination with
the three types of feature vectors. A unique to our work is the
fact that we experimented with training sets with different
sizes (i.e., 90%, 75%, 50%, and 25% of the whole dataset) to
determine the smallest size of the training set that produces
good classification results.

Furthermore, we proposed a novel unsupervised approach
for identification of security bug reports, which is based
on the concept of anomaly detection and does not require
labeled training set. Specifically, we approached this as one-
class classification, and classified bug reports similar to
the descriptions of vulnerability classes from the Common
Weakness and Enumeration (CWE) view CWE-888 as se-
curity related.

We evaluated the proposed supervised and unsupervised
approaches on three datasets extracted from the issue track-
ing systems of two NASA missions. The evaluation results
led to the following main findings:

• Multiple supervised learning systems, consisting of
different combinations of feature vectors and super-
vised learning algorithms, performed well. It appears
that supervised classification is affected more by the
learning algorithms than by feature vectors. Some
learning algorithms performed better than others; the
best performing algorithm was different for different
feature vectors and different datasets. In general, the
Naive Bayes algorithm performed consistently well,
among or close to the best performing algorithms across
all feature vectors and datasets.

• Supervised classification of bug reports was just as
good with only 25% of the data used for training as

with using 90% for training (i.e., the standard 10-fold
cross validation). This finding has important practical
implications because the manual labeling of the bug re-
ports in the training set is a tedious and time consuming
process.

• Unsupervised learning based on anomaly detection can
be used for bug report classification, but it had slightly
worse performance (with respect to G-Score) than the
supervised learners. Note however that the better perfor-
mance of the supervised learning comes at the expense
of manual labeling the bug reports in the training set.

• The performance of the classification, both supervised
and unsupervised, differed across the three datasets.
This was mainly due to the different amounts of
security related information provided in the textual
fields of the bug reports. Interestingly, the lack of
security related information affected the performance
of the classification more significantly than the class
imbalance problem. Thus, the classification performed
the best on the Ground Mission IV&V Issues dataset,
which had more security relevant information in the
descriptions, even though this was the most imbalanced
dataset (with only 7% of bug reports being security
related).

In general, the results presented in this paper showed
that automated identification of security related bug reports
holds a great potential. Our future work is focused on
experimenting with other approaches to build a vocabulary
that may have potential to further improve the performance.

ACKNOWLEDGMENTS

This work was funded in part by the NASA Software
Assurance Research Program (SARP) and by the NSF grant
CNS-1618629. Any opinions, findings, and recommenda-
tions expressed in this material are those of the authors and

11



do not necessarily reflect the views of the funding agencies.
The authors thank the following NASA personnel for their
support: Brandon Bailey, Craig Burget, and Dan Painter. The
authors also thank Tanner Gantzer for his assistance.

REFERENCES

[1] N. Jalbert and W. Weimer, “Automated duplicate detection for
bug tracking systems,” in Proceedings of the 2008 IEEE In-
ternational Conference on Dependable Systems and Networks
(DSN), June 2008, pp. 52–61.

[2] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck,
“Comparing mining algorithms for predicting the severity of
a reported bug,” in Proceedings of the 15th European Confer-
ence on Software Maintenance and Reengineering (CSMR),
March 2011, pp. 249–258.

[3] K. Somasundaram and G. C. Murphy, “Automatic categoriza-
tion of bug reports using Latent Dirichlet Allocation,” in Pro-
ceedings of the 5th India Software Engineering Conference
(ISEC’12), 2012, pp. 125–130.

[4] M. M. Ahmed, A. R. M. Hedar, and H. M. Ibrahim, “Pre-
dicting bug category based on analysis of software repos-
itories,” in Proceedings of the 2nd International Confer-
ence on Research in Science, Engineering and Technology
(ICRSET’2014), 2014, pp. 44–53.

[5] L. Layman, A. P. Nikora, J. Meek, and T. Menzies, “Topic
modeling of NASA space system problem reports: Research
in Practice,” in Proceedings of the 13th International Confer-
ence on Mining Software Repositories (MSR’16), 2016, pp.
303–314.

[6] D. Wijayasekara, M. Manic, and M. McQueen, “Vulnera-
bility identification and classification via text mining bug
databases,” in Proceedings of the 40th Annual Conference of
the IEEE Industrial Electronics Society (IECON 2014), Oct
2014, pp. 3612–3618.

[7] D. Behl, S. Handa, and A. Arora, “A bug mining tool to
identify and analyze security bugs using Naive Bayes and
TF-IDF,” in Procedings of the 2014 International Confer-
ence on Optimization, Reliabilty, and Information Technology
(ICROIT), Feb 2014, pp. 294–299.

[8] F. Peters, M. Thein T. Tun, Y. Yu, and B. Nuseibeh, “Text
filtering and ranking for security bug report prediction,” IEEE
Transactions on Software Engineering, vol. PP, no. 99, pp. 1–
1, 2017, iEEE Early Access Articles.

[9] N. Mansourov, “Software fault patterns: To-
wards formal compliance points for CWE,”
2011, [online] https://buildsecurityin.us-
cert.gov/sites/default/files/Mansourov-SWFaultPatterns.pdf.

[10] “CWE-888: Software fault pattern (SFP) clusters, MITRE
Corporation,” https://cwe.mitre.org/data/graphs/888.html.

[11] K. Goseva-Popstojanova and J. Tyo, “Security vulnerability
profiles of mission critical software: Empirical analysis of
security related bug reports,” in Proceedings of the 28th IEEE
International Symposium on Software Reliability Engineering
(ISSRE 2017), 2017, pp. 152 – 163.

[12] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-
G. Guéhéneuc, “Is it a bug or an enhancement?: A text-
based approach to classify change requests,” in Proceedings
of the 2008 Conference of the Center for Advanced Studies
on Collaborative Research: Meeting of Minds (CASCON’08),
2008, pp. 23:304–23:318.

[13] I. Chawla and S. K. Singh, “An automated approach for bug
categorization using fuzzy logic,” in Proceedings of the 8th
India Software Engineering Conference (ISEC’15), 2015, pp.
90–99.

[14] A. Hovsepyan, R. Scandariato, W. Joosen, and J. Walden,
“Software vulnerability prediction using text analysis tech-
niques,” in Proceedings of the 4th International Workshop on
Security Measurements and Metrics (MetriSec’12), 2012, pp.
7–10.

[15] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen,
“Predicting vulnerable software components via text mining,”
IEEE Transactions on Software Engineering, vol. 40, no. 10,
pp. 993–1006, Oct 2014.

[16] H. Packard, “Fortify static code analyser,” 2015, [online]
http://www8.hp.com/us/en/software-solutions/static-code-
analysis-sast/.

[17] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi,
K. Rieck, S. Fahl, and Y. Acar, “VCCFinder: Finding po-
tential vulnerabilities in open-source projects to assist code
audits,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS’15), 2015,
pp. 426–437.

[18] D. A. Wheeler, “Flawfinder,” 2016, [online]
http://www.dwheeler.com/flawfinder/.

[19] J. A. Wang and M. Guo, “Vulnerability categorization using
Bayesian Networks,” in Proceedings of the 6th Annual Work-
shop on Cyber Security and Information Intelligence Research
(CSIIRW ’10), 2010, pp. 29:1–29:4.

[20] M. Gegick, P. Rotella, and T. Xie, “Identifying security
bug reports via text mining: An industrial case study,” in
Procedings of the 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010), May 2010, pp. 11–20.

[21] J. L. Wright, J. W. Larsen, and M. McQueen, “Estimating
software vulnerabilities: A case study based on the misclas-
sification of bugs in MySQL server,” in Proceedings of the
8th International Conference on Availability, Reliability and
Security (ARES), Sept 2013, pp. 72–81.

[22] D. Wijayasekara, M. Manic, J. L. Wright, and M. McQueen,
“Mining bug databases for unidentified software vulnerabil-
ities,” in Procedings of the 5th International Conference on
Human System Interactions, June 2012, pp. 89–96.

[23] “Common Vulnerability Scoring System (CVSS),” 2015, The
Forum of Incident Response and Security Teams (FIRST);
https://www.first.org/cvss.

[24] N. Project, “Natural language tooklkit,” 2016, [online]
http://www.nltk.org/.

[25] P. S. Foundataion, “Python,” 2016, [online]
https://www.python.org/.

[26] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:
A survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58,
Jul. 2009.

[27] L. Manevitz and M. Yousef, “One-class document classifi-
cation via Neural Networks,” Neurocomputing, vol. 70, pp.
1466 – 1481, 2007.

12


